Immune tolerance of food is mediated by layers of CD4+ T cell dysfunction

  • Renz, H. et al. Food allergy. Nat. Rev. Dis. Primers 4, 17098 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Green, P. H., Lebwohl, B. & Greywoode, R. Celiac disease. J. Allergy Clin. Immunol. 135, 1099–1106 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pabst, O. & Mowat, A. M. Oral tolerance to food protein. Mucosal Immunol. 5, 232–239 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, E. G., Yin, X., Swaminathan, A. & Eisenbarth, S. C. Antigen-presenting cells in food tolerance and allergy. Front. Immunol. 11, 616020 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mowat, A. M. To respond or not to respond – a personal perspective of intestinal tolerance. Nat. Rev. Immunol. 18, 405–415 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Battaglia, M., Gianfrani, C., Gregori, S. & Roncarolo, M. G. IL-10-producing T regulatory type 1 cells and oral tolerance. Ann. N. Y. Acad. Sci. 1029, 142–153 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weiner, H. L., da Cunha, A. P., Quintana, F. & Wu, H. Oral tolerance. Immunol. Rev. 241, 241–259 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Curotto de Lafaille, M. A. et al. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29, 114–126 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hataye, J., Moon, J. J., Khoruts, A., Reilly, C. & Jenkins, M. K. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312, 114–116 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marzo, A. L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol. 6, 793–799 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nelson, R. W. et al. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity 42, 95–107 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moser, B. CXCR5, the defining marker for follicular B helper T (TFH) cells. Front. Immunol. 6, 296 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, S. & Dong, C. A complex issue on CD4+ T-cell subsets. Immunol. Rev. 252, 5–11 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kotov, J. A. & Jenkins, M. K. Cutting edge: T cell-dependent plasmablasts form in the absence of single differentiated CD4+ T cell subsets. J. Immunol. 202, 401–405 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kalekar, L. A. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rees, W. et al. An inverse relationship between T cell receptor affinity and antigen dose during CD4+ T cell responses in vivo and in vitro. Proc. Natl Acad. Sci. USA 96, 9781–9786 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pepper, M., Pagán, A. J., Igyártó, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grover, H. S. et al. The Toxoplasma gondii peptide AS15 elicits CD4 T cells that can control parasite burden. Infect. Immun. 80, 3279–3288 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Geginat, G., Schenk, S., Skoberne, M., Goebel, W. & Hof, H. A novel approach of direct ex vivo epitope mapping identifies dominant and subdominant CD4 and CD8 T cell epitopes from Listeria monocytogenes. J. Immunol. 166, 1877–1884 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lycke, N. The mechanism of cholera toxin adjuvanticity. Res. Immunol. 148, 504–520 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ohtani, N. & Kawada, N. Role of the gut–liver axis in liver inflammation, fibrosis, and cancer: a special focus on the gut microbiota relationship. Hepatol. Commun. 3, 456–470 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marshall, H. D. et al. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4+ cell properties during viral infection. Immunity 35, 633–646 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • MacMicking, J. D. IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol. 25, 601–609 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Longhi, M. P. et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206, 1589–1602 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta– and retinoic acid–dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cong, Y., Weaver, C. T. & Elson, C. O. The mucosal adjuvanticity of cholera toxin involves enhancement of costimulatory activity by selective up-regulation of B7.2 expression. J. Immunol. 159, 5301–5308 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Bromander, A. K., Kjerrulf, M., Holmgren, J. & Lycke, N. Cholera toxin enhances alloantigen presentation by cultured intestinal epithelial cells. Scand. J. Immunol. 37, 452–458 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wong, H. S. et al. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 184, 3981–3997 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liao, W., Lin, J. X., Wang, L., Li, P. & Leonard, W. J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johnston, R. J., Choi, Y. S., Diamond, J. A., Yang, J. A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209, 243–250 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kiner, E. et al. Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nat Immunol. 22, 216–228 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sumida, T. S. et al. Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat. Immunol. 23, 632–642 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trefzer, A. et al. Dynamic adoption of anergy by antigen-exhausted CD4+ T cells. Cell Rep. 34, 108748 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mohrs, K., Wakil, A. E., Killeen, N., Locksley, R. M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McSorley, S. J., Asch, S., Costalonga, M., Reinhardt, R. L. & Jenkins, M. K. Tracking Salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity 16, 71–83 (2002).

    Article 

    Google Scholar 

  • Leehan, K. M. & Koelsch, K. A. T cell ELISPOT: for the identification of specific cytokine-secreting T cells. Methods Mol. Biol. 1312, 427–434 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Qiu, Z. & Sheridan, B. S. Isolating lymphocytes from the mouse small intestinal immune system. J. Vis. Exp. https://doi.org/10.3791/57281 (2018).

  • Ertelt, J. M. et al. Selective priming and expansion of antigen-specific Foxp3CD4+ T cells during Listeria monocytogenes infection. J. Immunol. 182, 3032–3038 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Glatigny, S., Duhen, R., Oukka, M. & Bettelli, E. Cutting edge: loss of α4 integrin expression differentially affects the homing of Th1 and Th17 cells. J. Immunol. 187, 6176–6179 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Swarnalekha, N. et al. T resident helper cells promote humoral responses in the lung. Sci. Immunol. 6, eabb6808 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • news.google.com

    Leave a Comment